Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells.
نویسندگان
چکیده
The tumor suppressor PTEN is a putative negative regulator of the phosphatidylinositol 3-kinase/Akt pathway. Exposure to Zn2+ ions induces Akt activation, suggesting that PTEN may be modulated in this process. Therefore, the effects of Zn2+ on PTEN were studied in human airway epithelial cells and rat lungs. Treatment with Zn2+ resulted in a significant reduction in levels of PTEN protein in a dose- and time-dependent fashion in a human airway epithelial cell line. This effect of Zn2+was also observed in normal human airway epithelial cells in primary culture and in rat airway epithelium in vivo. Concomitantly, levels of PTEN mRNA were also significantly reduced by Zn2+ exposure. PTEN phosphatase activity evaluated by measuring Akt phosphorylation decreased after Zn2+ treatment. Pretreatment of the cells with a proteasome inhibitor significantly blocked zinc-induced reduction of PTEN protein as well as the increase in Akt phosphorylation, implicating the involvement of proteasome-mediated PTEN degradation. Further study revealed that Zn2+-induced ubiquitination of PTEN protein may mediate this process. A phosphatidylinositol 3-kinase inhibitor blocked PTEN degradation induced by Zn2+, suggesting that phosphatidylinositol 3-kinase may participate in the regulation of PTEN. However, both the proteasome inhibitor and phosphatidylinositol 3-kinase inhibitor failed to prevent significant down-regulation of PTEN mRNA expression in response to Zn2+. In summary, exposure to Zn2+ ions causes PTEN degradation and loss of function, which is mediated by an ubiquitin-associated proteolytic process in the airway epithelium.
منابع مشابه
PTEN Increases Autophagy and Inhibits the Ubiquitin-Proteasome Pathway in Glioma Cells Independently of its Lipid Phosphatase Activity
Two major mechanisms of intracellular protein degradation, autophagy and the ubiquitin-proteasome pathway, operate in mammalian cells. PTEN, which is frequently mutated in glioblastomas, is a tumor suppressor gene that encodes a dual specificity phosphatase that antagonizes the phosphatidylinositol 3-kinase class I/AKT/mTOR pathway, which is a key regulator of autophagy. Here, we investigated i...
متن کاملThe Influence of Zinc Status on Akt Signaling Pathway in Human Normal Prostate Epithelial Cells and Human Malignant Prostate Cells
Title of Dissertation: THE INFLUENCE OF ZINC STATUS ON AKT SIGNALING PATHWAY IN HUMAN NORMAL PROSTATE EPITHELIAL CELLS AND HUMAN MALIGNANT PROSTATE CELLS Chung-Ting Han, Doctor of Philosophy, 2007 Directed By: Professor David Kai Y. Lei Department of Nutrition and Food Science Akt is known for promoting tumorigenesis through cellular proliferation. Supraphysiologic levels of zinc has been shown...
متن کاملProteasome inhibition induces TNFR1 shedding from human airway epithelial (NCI-H292) cells.
The type 1 55-kDa TNF receptor (TNFR1) is an important modulator of lung inflammation. Here, we hypothesized that the proteasome might regulate TNFR1 shedding from human airway epithelial cells. Treatment of NCI-H292 human airway epithelial cells for 2 h with the specific proteasome inhibitor clasto-lactacystin beta-lactone induced the shedding of proteolytically cleaved TNFR1 ectodomains. Clas...
متن کاملThe major component of IkappaBalpha proteolysis occurs independently of the proteasome pathway in respiratory syncytial virus-infected pulmonary epithelial cells.
Previously we showed that infection of human type II airway epithelial (A549) cells with purified respiratory syncytial virus (pRSV) induced interleukin-8 transcription by a mechanism involving cytokine-inducible cytoplasmic-nuclear translocation of the RelA transcription factor. In unstimulated cells, RelA is tethered in the cytoplasm by association with the IkappaB inhibitor and can be releas...
متن کاملZinc Protoporphyrin Suppresses β-Catenin Protein Expression in Human Cancer Cells: The Potential Involvement of Lysosome-Mediated Degradation
Zinc protoporphyrin (ZnPP) has been found to have anticancer activity both in vitro and in vivo. We have recently demonstrated that ZnPP diminishes β-catenin protein expression in cancer cells. The present study examined the cellular mechanisms that mediate ZnPP's suppression of β-catenin expression. We demonstrate that ZnPP induces a rapid degradation of the β-catenin protein in cancer cells, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 30 شماره
صفحات -
تاریخ انتشار 2003